Use of Thresholds in Landscape Assessments

K. Bruce Jones, James D. Wickham, and Anne C. Neale Workshop – Making the Linkages Through the Use of Environmental Indicators, 17 – 20 May, 2004

Presentation Highlights

- Briefly review the concept of thresholds and issues related to threshold establishment
- Present results of landscape studies where landscape conditions are linked to aquatic resource conditions
- Demonstrate use of statistical approaches that permit interpretation of landscape data in the context of thresholds for specific aquatic endpoints

Why Do We Want to Establish Thresholds

- Evaluate resource condition and impairment
- Predict/forecast future condition and likelihood of a change to less desirable condition (generally) ... transition to a state that is less desirable
- Early warning (some but not most)
- Benchmark related to risk reduction and restoration

General Types of Thresholds

- Arbitrary
- Ecologically- or Biophysically-based
 - Ecoregions
 - Reference sites
 - Gradient analysis
 - Temporal studies
- Distribution of the Data
 - Quintiles and other classifications

Total Nitrogen Concentration by Ecoregion

Why Has It Been Difficult to Establish Thresholds

- Lack of long-term data over extensive areas
- Scaling issues ... understanding constraints in space and time (in different biophysical settings)
- Complex interactions
- Initial conditions, time lags, and history
- Sequence and frequency of disturbance/drivers influences threshold levels at which phase transitions occur (to less desirable state)
- They may exist only in our minds! (should be the H⁰)
- State of science allows us to understand thresholds for areas that are really stuffed ... but not much beyond that.

From: Jennings and Jarnagin 2003. Landscape Ecology.

Landscape Assessments and Thresholds

Primary Goals

- Link landscape and biophysical conditions at multiple scales to ecological endpoints and associated processes so that we can understand how landscape condition influences condition thresholds for ecological resources of interest
- If we understand these relationships then we may be able to design landscape/watersheds to reduce risks of exceeding thresholds
- Focus mostly on aquatic resource endpoints
- Emphasis on existing data, but where possible, influence the designs of ongoing or upcoming probability samples

Statistical Approaches

- Evaluating User-Defined Thresholds
 - Logistics regression
 - Baysian
- Inductive Approaches to Determine Thresholds and Breakpoints
 - Classification and Regression Tree (CART)

General Approach

- Select specific endpoint of interest (e.g., TMDL parameter)
- Collect/acquire field samples
- Filter data based on selection criteria
- Assemble spatial data at various scales on various units (functional and arbitrary)
- Generate metrics and/or measures ... pair metrics with individual samples sites in a SAS database
- Conduct statistical analyses

USGS Loading Sample Sites and Associated Watersheds

Location of Example Watershed

100

Example Watershed

Landscape Metrics

Mean Riparian agriculture **Riparian forest Forest fragmentation Road density Forest land cover** Agricultural land cover **Agricultural land cover** on steep slopes **Nitrate deposition Potential soil loss** Roads near streams Slope gradient Slope gradient range Slope gradient variance **Urban land cover** Wetland land cover **Barren land cover**

Logistics Regression

- Uses threshold values and provides crossvalidation and probabilities of exceeding a threshold (yes/no relative to a dependent variable) based on a set of independent variables (landscape and biophysical variables)
- Useful for evaluating probability of exceeding a TMDL threshold/condition threshold

Logistic Regression Results with Test Points

Other Applications of Logistics/Threshold Approach

- Watershed/landscape linkages with benthic indices in east coast estuaries (Steve Hale, Atlantic Ecology Division, NHEERL)
- Watershed/landscape linkages to concentrations of pesticides in sediment in Mid-Atlantic coastal streams (Ann Pitchford, Environmental Sciences Division, NERL)

Baysian Landscape Models

- Emphasis is on the use of existing data
- Can be used to evaluate probability of exceeding a threshold value for an indicator

 Jim Wickham (EPA RTP/NERL) and John Paul (EPA RTP/NHEERL) are using this approach in their work.

Nitrogen Export kg/ha/yr

Forest	Urban	Agriculture			
0.1	5.0	3.2			
0.1	5.0 4.8				
0.2	5.0	5.0			
0.7	5.1	5.0			
2.2	5.4	5.8			
2.5	6.7	9.1			
2.5	7.9	9.6			
2.6	9.6	9.8			
3.0	9.6	11.9			
3.7	12.0	14.0			
4.4	16.3	20.0			
7.6	18.0	20.6			
12.2	28.0	22.3			
		23.5			
1991, 20:717)		33.3			

Source: Frink (JEQ,

Land- Cover	WS (ha)	N/P	# of Obs.	Min	Q ₂₅	Q ₅₀	Q ₇₅	Max
Agriculture	40-8000	N	30	2.1	6.6	11.1	20.3	53.2
Urban	4-4800	N	19	1.5	4.0	6.5	12.8	38.5
Forest	7-47000	N	21	1.4	1.9	2.5	3.3	7.3
Agriculture	40-8000	P	27	0.08	0.49	0.91	1.34	5.40
Urban	4-4800	P	24	0.19	0.69	1.10	3.39	6.23
Forest	7-47000	Р	62	0.01	0.04	80.0	0.22	0.83

$$N, P = \sum_{i}^{n} (C_i * A_i)$$
 Threshold 7.0 0.8

Risk: # of iterations / 10000 >= 7.0 or 0.8

Classification and Regression Tree Analysis

Thresholds Established Inductively

CART Analysis – N concentration in MAIA Streams

Conclusions

- Difficult to establish non-arbitrary thresholds because ecosystems are complex and constantly evolving ... but thresholds and standards will be established!
- Biophysical classification schemes will be important in improving our understanding of thresholds ... but one size doesn't fit all!
- Landscape analysis and statistical approaches help evaluate a wide range of threshold approaches using existing data
- Landscape analysis and statistical approaches permit the mapping of uncertainty in exceeding thresholds based on landscape models and existing site data

Conclusions

- Need landscape metrics and indicators that capture horizontal interactions ... to understand importance of position in the landscape and neighborhood influences
 - Linkage to hydrologic models that establish cell-to-cell flow networks
 - Distance metrics that weight individual cells and patches relative to their influence and contribution (Don Weller, Smithsonian)

